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Abstract 

Symmetry simplifications are introduced in configuration 

interaction (CI) by reducing the number of symmetry-allowed 

space types if there is degeneracy in some of the molecular 

orbitals by constructing the unique space types. A new 

symmetry group which we call the configuration symmetry group 

is defined and is shown to be expressible as a generalized 

wreath product group. Generating functions are derived for 

enumerating the equivalence classes of space types wherein 

all the space types in the same equivalence class with 

identical spin coupling make identical contributions to 

correlation. A double coset method is expounded which 

constructs the representatives of all equivalence classes of 

space types using the cycle index of generalized wreath 

product and the double cosets of label subgroup with gener-

alized wreath product in the symmetric group S , if n is the 
n 

number of electrons. Method is illustrated with CI using 

the localized Lowdin orbitals of polyenes and CI in benzene 

for several reference states. 
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1. Introduction 

Configuration interaction1 (CI) is a powerful technique which introduces 

correlation to the self~consistent~field (SCF) reference state. Electrons are 

excited to virtual orbitals and the resulting electronic states are known as 

configurations. A configuration is essentially characterized by two components 

knmvn as space types and spin types. The space type of a configuration speci.-

fies the orbitals and the occupancy of the electrons in various orbitals and 

ignores the spin couplings of electrons which are specified by the appropriate 

symmetry~adapted spin functions either in the unitary group U(n) or the symmetry 

group S • where n is the number of electrons. In recent years symmetry simplifi
n 

cations of the symbolic formulas used in constructing the CI matrix elements were 

accomplished using the unitary symmetry of the spin states or the associated 

2 
Gel'fand states of the electrons. The number of space types can be reduced by 

selecting the symmetry-allowed space types from a set of all possible space types. 

This is a consequence of the totally symmetric Hamiltonian which has nonvanishing 

matrix elements only if the direct product of the two states of the CI matrix 

element contains the totally symmetric representation. This, of course, cuts 

down the number of space types when a molecule possesses symmetry elements. 

In this paper we accomplish an additional symmetry reduction of the 

symmetry-allowed space types if some of the SCF orbitals or the orbitals used 

in constructing configurations are degenerate. In such a case several configu-

rations are transformable into one another by permutting the degenerate orbitals 

and consequently they have identical CI matrix elements and therefore, their CI 

expansion coefficients differ at most by a sign. Thus, if the CI matrix element 

of a representative of these equivalence classes of configurations is determined 

then the matrix elements of the other configurations in this class are obtained. 

In this paper we consider this symmetry simplification. We define and formulate 

a new symmetry group which we call the configuration symmetry group and show that 
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it is expressible as a generalized wreath product. The equivalence classes of 

space types are enumerated using the cycle indices of generalized wreath products 

as generators and constructed using the double cosets of label subgroup with 

configuration symmetry group in the symmetric group S • A computer algorithm 
n 

can also be formulated for generating the representatives of equivalence classes 

of space types. 

In Section 2 configuration symmetry groups are defined and shown to be 

expressible as generalized wreath products. In Section 3 we outline the generation 

of equivalence classes of space types and in Section 4 a double coset method is 

formulated for constructing these representatives of equivalence classes of space 

types. 

2. Configuration Symmetry Groups 

A. Formulation 

Two configurations which can be transformed into each other by permuting 

degenerate orbitals have identical CI matrix elements. This is also reflected 

in the corresponding coefficients of the CI wavefunction. For example, the 

two configurations of the localized Lowdin orbitals of butadiene shown below 

are equivalent. 

-x:-x- -x--x:-

-x-x- -x-x-

I II 

This is because configurations I and II are transformable into each other by 

interchanging the degenerate occupied and virtual Lowdin orbitals. In fact, 

Ohmine et al3 carried out a (S + D)-CI (CI which includes single and double 

excitations from the reference state) with 
1

1A reference state and obtained the 
g 

same coefficient (-0.148) for these two configurations in the CI wavefunction 
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and showed that correlation to the 11A ground state is predominantly introduced 
g 

by these 2 configurations. In general, such configurations have CI coefficients 

which differ at most by a sign. However, the converse may not necessarily be 

true. We may have 2 configurations which are not equivalent in the above sense 

and yet may have coefficients of the same magnitude in the CI wavefunctions. 

For example, the two configurations of butadiene shown below, which are construe~ 

ted using the delocalized SCF orbitals of butadiene have the same coefficient 

(-0.054) in (S + D) CI with 11A 
g 

-x-x-

-x--x-

3 reference state. 

Of course, this need not bother us for we are interested in introducing symmetry 

simplifications when there is configuration equivalence, but we must be aware 

of this. 

If we denote the degenerate occupied Lowdin orbitals of butadiene by w
1 

and 

w2 and the virtual orbitals by w
3 

and w
4

, then any two space types that can be 

transformed into each other by the permutation (12)(34) of the Lowdin orbitals 

(where we denote w. by i) with the same spin coupling are equivalent. In the 
l 

case of localized Lowdin orbitals the occupied and virtual orbitals have to be 

permuted simultaneously because of their localization to ethylenic units. Let 

us look at the equivalence of space types without considering the spin couplings 

which are determined depending on the reference state. However, we must be 

aware that the same space type can have more than one spin coupling. (For 

exarnple, a 2 dimensional coupling to obtain a singlet state when there are 4 

open shells). Each orbital can accommodate at most 2 electrons. Define a site 
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where an electron can be accommodated as a hole. Thus each orbital contains 2 

holes. Two holes in the same orbital are equivalent because putting an electron 

in any one of these holes would generate the same space type or configuration. 

Consequently, let us define the configuration symmetry group as the group that 

includes the permutations of the degenerate orbitals and the permutations of 

the holes in each orbital. Such a definition is a little vague, eventhough, it 

motivates the formulation of a rigorous definition and helps .to understand the 

problem. A precise definition and formulation of the configuration symmetry 

group are given in the next section. 

B. Configuration Symmetry Groups as Generalized Wreath Products 

Let Q be a set of orbitals some of which are degenerate. Let G be a permu-

tation group which consists of permutations of degenerate orbitals. For example, 

~2 for the Lowdin orbitals of butadiene is the set {w
1

, w2 , w
3

, w
4

} and G is the 

set {(1)(2)(3)(4), (12)(34)}. Note that in this case the localized orbitals w
1 

and w2 cannot be permuted without permuting the corresponding virtual orbitals 

since they are localized to ethylenic units. However, delocalized degenerate 

SCF orbitals (both occupied and virtual) can be permuted independently because 

there is no such localization to a particular unit cell. Since the two holes 

in each orbital are equivalent these holes can also be permuted. If we denote 

them by 1 and 2 then the permutation group of these holes is s2 = {(1)(2), (12)}. 

We have a symmetry group G acting on Q and a group s
2 

acting on the holes in 

each orbital of Q, Let n be a map from Q to H. Equivalently, for each orbital 

in Q we assign a permutation in H, which determines the permutations of the holes 

in that orbital. The problem is reminiscent of the symmetry groups of nonrigid 

4 
molecules where the group G acts on the rigid structure and a group H corresponds 

to the set of torsional permutations in the structure. Define the configuration 

symmetry group as the set of permutations {(g; rr)/gr:.G, rr:Q-.. HL This is 
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precisely the wreath product G[H] used by the author in the context of symmetry 

groups of non-rigid molecules. 4 The product of 2 elements (g; n) and g'; Tr') 

in G[H] is defined as 

(g; n)(g'; n') 

where 

for idt. 

It can be seen that (e; e') is the identity of the group G[H], withe being the 

identity of G and e' defined by 

where 
1

H is the identity of the group H. Inverse of an element (g; n) is 

( -1 -1 ) 
g ; 1T -1 . 

g 
Let us illustrate the above definition with the localized orbitals of 

butadiene. The configuration symmetry group of these orbitals is the wreath 

product of G = s2 (4) = {(1)(2)(3)(4), (12)(34)} with H = s2 (2) = {(1)(2), (12)}. 

Let S (n) in general denote the permutation group of n objects containing m! 
m 

elements. For example, a permutation in the configuration symmetry group 

s2 (4)[S2 (2)] would be of the form ((12)(34); 11), with 11 defined below. 

1T (1) (12) 

TI (2) (1) (2) 

1r(3) (12) 

n(4) (12) 

That is, permute the degenerate occupied and virtual Lowdin orbitals. In 

addition, permute the holes in the Lowdin orbitals 1, 3 and 4. 
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where 

A permutation representation of G [H] is obtained as (H
1 

x H
2 

x ... xHn) • G 1 , 

H. {(e; n)/e is the identity of G}, 
1 

G' = {(g; e')/gsG}, 

and n is the number of elements in~. H
1 

x H2 x •.•. xHn is ann-fold direct 

product of n copies of the group H. H1 x H2 x •.. xHn also denoted asH* is an 

invariant subgroup of G(H]. Thus the group product H*G' is also a semidirect 

product. The order of the group G [H] is I G II H II~ I , where the modulus sign is 

used to denote the number of elements in a set. 

If the eight holes of the Lowdin orbitals of butadiene are denoted as 

1, 2, 3, 4, 5, 6, 7 and 8 with the holes 1 and 2 belonging to the orbital w1 , 

3 and 4 to the orbitals w2 , etc., then, for example, a permutation representation 

of the permutation ((12)(34); n), with n defined as in the above example, is 

(12)(3)(4)(56)(78)(13)(24)(57)(68) = (1423)(58)(67). 

Instead of the Lowdin orbitals of butadiene if Lowdin orbitals of hexatriene 

or decapentadiene need to be considered then the above formalism has to be 

generalized. Such a generalization of wreath product to generalized wreath 

d . 'bl h G . · · t · 4 pro uct 1s poss1 e w en 1s 1ntrans1 1ve. The group G acting on ~ is 

intransitive if~ can be partitioned into mutually disjoint sets Y
1

, Y2 , .....• 

Y, and the group G permutes elements only within a set Y .. Equivalently, G 
n 1 

does not mix elements of different Y-sets, Let H. be a group acting on the 
l 

holes which correspond to orbitals in the set Y .. Let n. be a map from the set 
l 1 

Yi to Hi. The generalized wreath product G(H1 , H2 , •.. ,Hm] consists of permu

tations {(g; n
1

, n2 , •••. ,nm)/gsG, ni:Yi ~Hi}. If we denote the occupied Lowdin 

orbitals of decapentadiene by w
1

, w2 , w3 , w
4 

and w
5 

and the virtual orbitals by 
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w
6

, w7, w8 , w9 and w
10 

then the Y-sets are Y
1 

= {w
1

, w
5

, w
6

, w
10

}, 

{w2 , w
4

, w
7

, w
9

} and Y
3 

= {w
3

, w
8

}. The group G is 

{(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)' (1,5) (2,4) (3) (6,10) (7,9) (8)} 

and the groups H
1

, n2 and H
3 

are s
2

(2). Then the configuration symmetry group 

of the Ldwdin orbitals of decapentadiene is s
2

(10)[S2 (2), s2 (2), s2 (2)]. The 

d r h • • 2 ... 24 • 24 • 2 "" 1024 • or .er or t 1s group 1s __ . In general, the order of generalized 

G[ . · J ·.I II- 1IY1 II IIYzl IH II \-Jreath product , Hp H2, ... ,Hm, 1s G H
1 

H2 ,,, m 

3. Generation of Equivalence Classes of Space Types 

A. Preliminaries and Formulation 

Let D be the set of holes in all orbitals. Let R be a set consisting of 

two elements 'p' and 'a','p' representing the presence of an electron in a hole in 

D, 1>1hile 'a' represents the absence of an electron in a hole in D. Then any 

space type is just a map from the set D to the set R. An example of such a map 

f
1 

from D toR which corresponds to the holesof the orbitals of butadiene is 

shovm below. 

f 1 (2) = a 

f 1 (3) = a 

f 1 (4) "" a 

f (5) 
1 p 

f 1 (6) p 

f 1 (7) p 

f 1 (8) "' a 

The resulting space type is ~x--x--
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The group G[H1 , H2, ... ,Hm] defined in Section 2B acts on Din that it permutes 

the holes in D. This in turn permutes the set of functions from D to R by the 

following recipe. 

Tf (i) 

For example, if T = ((12)(34); n) with n defined as in the illustrative example 

of Section 2B and f
1 

defined as above 

fl ((1324)(58)(67) i) 

Thus 

l fl (1) fl((1324)(58)(67) 1) ;:: f1 (3) = a 

l f1 (2) £1((1324)(58)(67) 2) fl (4) = a 

l fl (3) fl((l324)(58)(67) 3) fl (2) = a 

L£1(4) £1((1324)(58)(67) 4) fl (1) p 

l f1 (5) £1((1324)(58)(67) 5) fl (8) = a 

l fl (6) fl((1324)(58)(67) 6) £1 (7) p 

l f1 (7) = fl ((1324)(58)(67) 7) :::: fl (6) p 

l f1 (8) fl ((1324)(58)(67) 8) = f1 (5) p 

Thus the configuration --x--x-- ----x---- is permuted to the configuration 
--x----

-~-x--- -x--x- by the action of T on the corresponding map f
1

. The space 
---x--

type resulting from the action of T is another map £2 from D to R and these two 

maps or the corresponding space types are equivalent. In general, two space types 

are said to be equivalent if there exists a TsG[H1 , H2 , ... ,Hm] such that the 

corresponding maps f. and f. satisfy the following condition. 
1 J 

f.(d) = f.(Td) 
1 J 

for every dsD. 

All the maps that are equivalent can be grouped together and they form an 
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equivalence class. In the next Section we obtain generators of equivalence 

classes of space types in terms of group structures known as cycle indices. 

B. Cycle Indices as Generators 

Any permutation can be represented by its cycle decomposition. For example, 

a permutation of 4 objects can be represented by (12)(34). This permutation 

has 2 cycles of length 2. (123)(4567) is another permutation of 7 objects 

containing a cycle of length 3 and a cycle of length 4. In general let a 

permutation T have b
1 

cycles of length 1, b2 cycles of length 2, ... ,bn cycles 

bl 
With this permutation we can associate the cycle representation x

1 

For example, the cycle representations associated with the 

permutations (12)(34) and (123)(4567) are x2
2 

and x
3
1

x4
1 , respectively. Define 

the cycle index of a permutation group T, denoted as PT, as the sum of cycle 

representations of the elements in T divided by ITI, the number of elements in 

T. Symbolically, 

where a typical permutation TsT has b
1 

cycles of length 1, b2 cycles of length 

2, etc. Consider T as the permutation group containing 6 elements shown below 

T {(1)(2)(3), (12)(3), (13)(2), (1)(23), (132), (123)}. 

Then the cycle index of this group is as follows. 

The cycle index of the group G[H
1

, H2 , ... ,Hm] can be obtained in terms of 

the cycle indices of G, H1 , H2 , .... ,Ht. Recall that G is an intransitive group 

acting on a set Q which is partitioned into the sets Y
1

, Y
2

, ... ,Ym. Let a gsG 

ll 



have C .. (g) cycles of length j in the set Y .. Then the cycle representation of 
lJ 1 

this grG would be 

n x .. 
i,j lJ 

c .. (g) 
1] 

where x .. stands for a j-cycle in the set Y .. For example, consider the permu~ 
1] l 

tation (1,5)(2,4)(3)(6,10)(8)(7,9) of the decapentadiene problem for which 

Y1 = {1,5,6,10}, Y2 = {2,4,7,9} and Y3 = {3,8}. 

(We omitted thew's for convenience.) Then this permutation gtG has 2 cycles 

of length 2 in the set Y
1 

(they are (1,5) and (6,10)), 2 cycles of length 2 in 

the set Y2 and 2 cycles of length 1 in the set Y
3

. Consequently, the correspon-

d . 1 . . 2 2 2 
1 ng eye e representation 1s x12 x22 x31 . The cycle index of G is thus defined 

as follows: 

= 1 I n n 
PG lGT grG i j 

x .. 
cij (g) 

1J 

For the decapentadiene problem the cycle index of s2 (10), is 

Let the cycle index of the group H., denoted by Z., be defined as follows. 
l 1 

1 =THJ 
a cycle representation of an hrH .. 

l 
Define Z .. as Z. with 

lJ 1 

every xk in Zi replaced by a xjk where jk is the product of j and k. In symbols, 

Z .. = Z.(xk + xk.). 
lJ l J 

it .can 5 be shown Then that the cycle index of G[H
1

,H2 , •.. ,Hm], 

Z(G[H
1

,H2 , ... ,Hm]) is obtained as follows. 
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That is, the cycle index of G[H1 ~H2 , ... ~Hm] is obtained by replacing 

every x .. in PG by Z •.• 
1] lJ 

Let us illustrate this with the LBwdin orbitals of decapentadiene. 

For this problem PG was already obtained. The three groups H
1

, H2 

Recall that 

Thus 

zll 

2
21 

231 

zl 

22 

Thus the cycle index of any H., Z. is as follows. 
l 1 

z. 
l 

H. 
l 

212 

222 

{(1)(2), (12)}. 

21 (xk -+ x2k) 
1 

= 2 

22(xk-+ x2k) 
1 

= 2 

(x2 
2 

+ x4) 

(x2 
2 

+ x,) 
'+ 

z3. 

Therefore, the cycle index of s2 (10)[S2 (2), s2 (2), s2 (2)] is as follows. 

Z(S 2(10)[s2(2), s2 (2) 1 s2 (2)]) = P
82

(lO)(xij -+ zij) 

1 1 2 4 1 2 4 1 2 2 
= 2 [ {2(xl +x2)} {2(xl +x2)} {2(xl +x2)} 

In this case the order of configuration group was 2048 whose cycle index 

was very efficiently obtained without enumerating all the 2048 permuta-

tions of the configuration symmetry group and summing all their cycle 

representations. 
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Having obtained the cycle index, the next step is to obtain 

generators of equivalence classes of space types. To accomplish this 

we introduce the concept of a weight of an element rsR, denoted as 

w(r), which is just a formal symbol which book-keeps the number of 

electrons in a configuration. For example, we may associate a weight 

1 if the electron is absent and a weight w if it is present. Then 

define the weight of any map f from D to R as the product of the weights 

of the corresponding images. In symbols, 

W(f) IT w(f(d)). 
dsD 

To illustrate consider the map f
1 

used as an illustrative example in 

Section 3A. The weight of this map W(f
1

) = w.l.l.l.w.w.w.l = 
4 

w • 

since 4 electrons are present in this configuration. In general, since 

we suppress the absence of an electron with the weight 1, for any con-

k 
figuration with k electrons, the weight would be w • 

Then we have the following theorem due to Polya6- 7 which gives a 

generating function for equivalence classes of space types. 

F 

With C = configuration symmetry group which is, in general, a generalized 

wreath product. That is, we obtain the generating function for equi

k 
valence classes of space types by replacing every xk by (l+w) . The 

coefficient of a typical term w£ in F gives the number of equivalence 

classes of space types containing £ electrons. 

Let us illustrate the method with several examples starting from 

the Lowdin orbitals of butadiene. The cycle index of butadiene problem 

is shown below. 
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1 1 2 4 ,l( 2 ))2] p ~[ (--(x +x ) ) + \- x +x 
'T 2 2 1 2 2 2 4 

1 
[x 

8 6 4 2 2 3 
5x

2 
4 2 2] 

32 1 +4xl x2 + 6x
1 

x
2 

+ !+x x + + 8x2 x
4 

+ 4x
4 

. 
1 2 

Thus F for butadiene is 

Note that F generates space types with all probable occupancies, even 

though, for the present problem we are interested in the coefficient 

of w4 (since there are 4 electrons) in F which is shown below. 

352/32 11. 

The eleven classes are shown in Table 1 where space types in the same 

row belong to the same equivalence class. 

It is also possible to obtain just the generating function for 

space types by letting G be the group containing only the identity in 

the generalized wreath product. The modified cycle index is as follows 

for the butadiene problem. 

The generating function for just the space types is shown be.low. 

F 

For an n-orbita1 problem it can be easily shown that the generating 

function for space types is 
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The coefficient of w4 in the generating function for the space types of 

butadiene is 

Thus a problem of 19 space types can be reduced to a problem involving 

11 space types. Butadiene was used as a simple,however, a typical 

example. We now proceed to a few more examples such as Lowdin orbitals 

of hexatriene, benzene, etc. For the Lowdin orbitals of hexatriene 

the cycle index is shown below. 

Thus the generating function F, is as follows 

F 

The coefficient of w6 in the above expression is 

Thus there are 71 equivalence classes of space type. It will be inter-

esting to compare this with the total number of space types which is 

the coefficient of w6 in the expression (l+w+w2)
6 

and is sho~m below. 

Thus symmetry reduces CI involving 141 space types to CI involving just 

71 unique space types. All are symmetry allowed in this example. 

As a last example consider benzene. In this case we generate all 

possible space types. However, for a particular reference state only 
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some of these would contribute because others may be symmetry forbidden, 

Nevertheless. our procedure must be general since if we want to look 

at different reference states we need to generate all possible space types 

and then select the space types allowed by symmetry. Benzene is 

considered here within the framework of TI electron approximation. The 

ground state is shown below in the delocalized representation 

The configuration symmetry group can be seen to be 

The cycle index of a direct product of groups is the product of the 

cycle indices. In this case the electrons in different sets of orbitals 

can be identified by different weights also. In such a case we get some 

more details of enumeration. The cycle index for benzene is shown below. 

6 If one collects the coefficient of w in the appropriate generating 

function obtained by replacing every xk by (l+w)k we find this to be 58. 

Thus the number of equivalence classes of space types for a CI of benzene 

is 58. Actually for a given reference state this number will be smaller 

because one has to choose symmetry-allowed space types from these 

equivalence classes, Nevertheless. any space type will contribute to 
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some reference states not necessarily the ground state. The total 

number of possible space types for benzene is 141. (This number is 

same as the number of space types for hexatriene as we would expect.) 

4. Double Coset Method for the Construction of a Representative of 
the Equivalence Classes of Space Types 

It is probably not just enough to enumerate the equivalence 

classes of space types even though this enumeration is important since 

it helps to construct a double coset decomposition which enables the 

construction of a representative in the equivalence class. There 

should be a method or an algorithm for the construction of a represen-

tative of each equivalence class so that one may carry out CI with these 

representatives. There are such procedures in the literature. The 

8 
formulation that we present here is essentially the idea of Ruch et al. 

who used the double cosets for enumerating isomers of chemical structures. 

However, in this section we reformulate this method to adapt it to 

generalized wreath product groups. Brown~ a1. 9 formulated a computer 

algorithm and program for constructing these representatives of double 

cosets. The double coset method was also used by Davidson
10 

to construct 

the symmetry-distinct basis set integrals. However, this double coset 

was constructed in the molecular point group which is a group of much 

lower order in comparison to the generalized wreath product groups. 

Let n be the number of holes in all the orbitals. Let m be the 

number of electrons. The group S x S for the present problem is 
m n-m 

called the label subgroup and let us denote it by L. Let C be the 

configuration symmetry group. Note that both L and C are subgroups of 

S . For an element sES , the set LsC is called a double coset of L and 
n n 

C in S . Any space type can be considered as an element of S . This is 
n n 
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because we may consider the identity of S as the space type in which 
n 

the holes of first m orbitals contain electrons. Then any other space 

type can be described by a permutation in S . Let us illustrate this 
n 

concept with 2 electrons and 2 orbitals shown below, 

X X 

The space type shown above corresponds to the map f defined below. 

f (1) p 

f (2) p 

f (3) a 

f(4) = a 

where 'a' and 'p' have the same meaning as in Section 3A, Then a 

permutation sueh as t = (1234) acts on f by the recipe given in 

Section 3A which is shown below, 

Tf(i) f(T-l i), 

-1 
Since T (1432) 

Tf(l) f((1432) 1) 

tf(2) ~ f((l432) 2) 

tf(3) f((l432) 3) 

tf(4) f((l432) 4) 

f(4) = a 

f (1) p 

f (2) p 

f(3) a, 

Consequently, the resulting space type is ----x--- , Hence this singly 
------x--

excited state can be generated by the permutation (1234) from the reference 

state. 

19 



Two elements s 1 and s 2 are said to be in the same double coset if 

The corresponding space types are then equivalent. Thus the unique 

space types are just the representatives of the double coset decomposition 

tatives if 

and 

s 
n 

t 
u 

i=l 
Ls.C 

1 

(Ls.C) D (Ls.C) = ~ if if. j, 
l J 

where ~ is the null set. We enumerated the number of distinct represen-

tatives in Section 3 using cycle indices as generators. 

The number of elements in any double coset LsC, denoted as ILsCI 

is given as follows. 

ILsCI 

Brown~ al. have formulated a computer algorithm and a program for 

constructing these distinct representatives. Details of this algorithm 

can be found in their paper. 

We now give an example of 2 degenerate orbitals with 2 electrons 

and their double coset representatives. The number of holes, n is 4. 

Since there are 2 electrons in these holes, the label subgroup is 

L = s2 x s2 . The configuration symmetry group C = s2 [s2 ]. The cycle 

index PC and the generating function F for this problem are shown below. 
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The coefficient of w2 in F is 2. Hence we look for s
1 

and s
2 

in s
4 

such that 

and 

We will illustrate this by explicitly writing out all the elements of 

each double coset. One obvious choice is s
1 

= e, the identity of s
4

. 

The resulting double coset is shown below. 

LeC {(1)(2), (12), (34), (12)(34), (13)(24), (14)(23), (1423), (1324)} 

(since L fl C = L) 

The second double coset which has no common element with LeC is the 

double coset L(l342)C. (1342) was chosen since it is not present in the 

first double coset. This choice is, of course, not unique for we could 

have chosen (1243), or (123), etc. However, any such choice would lead 

to the same double coset. The second double coset thus obtained is 

shown below. 

L(l342)C 

Note that 

{(1342), (134), (142), (14), (23). (1243), (243), (123). 

(234). (1234). (24). (124). (132). (143). (1432). (13)}. 

(LeC) U (L(l342)C) s
4 

and 

(LeC) fl (L(l342)C) ¢. 
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Hence {e, (1342)} is a set of distinct representatives. The corresponding 

space types are obtained by operating s1 and s 2 on the map f 1 shown below. 

Since s
1 

below. 

f2(1) 

f2(2) 

f2 (3) 

f2(4) 

= 

(1342) fl (1) 

(1342) fl (2) 

(1342) fl (3) 

(1342) £1(4) 

fl(l) p 

fl (2) p 

fl (3) = a 

fl (4) a. 

(1342) the map f 2 

fl ( (1243) 1) fl (2) p 

fl((l243) 2) fl(4) = a 

fl((l243) 3) fl (1) p 

= fl ( (1243) 4) fl (3) = a 

The resulting space types which correspond to f 1 and f
2 

are shown below. 

-x--x-- --x-- --x--

Of course, it can be easily seen that these are the 2 distinct represen

tatives for 2 electrons in 2 degenerate orbitals. This was only an 

illustrative example used to exemplify the concept of double coset 

method. In general, for more complex systems these double coset de

compositions can be constructed with the help of cycle indices, and 

Brown et al's algorithm adapted to generalized wreath products using a 

computer. 

In the present formalism we need to evaluate the CI symbolic formulas 

and the matrix elements between the representatives of the double cosets 

and a formula and a matrix element for a pair of elements in each equivalence 

class. Consequently, the number of space types, the number of symbolic 
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formulas and the number of CI matrix elements that need to be constructed 

are brought down. It should be interesting to look at the combinatorics 

of the CI formulas constructed using the double cosets of space types 

and all the space types. If n is the total number of configurations 

the number of CI formulas and matrix elements that need to be evaluated 

is n(n+l)/2. Let m be the number of equivalence classes of configurations. 

Since we have to construct the formulas for CI matrix elements between 

the representatives of all the double cosets and a formula for a pair of 

elements in each equivalence class, the total number of formulas that 

need to be constructed is m(m+l)/2 + m ~ m(m+3)/2. For the localized 

orbitals of butadiene these numbers are 210 and 90, respectively, thus 

bringing down the number of unique formulas and matrix elements to 90 

from 210. 

The formalism outlined here can be easily adapted to (S+D) - CI 

or any other CI including the full CI. 
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Table 1 

The eleven equivalence classes of space types of Lowdi.n 
orbitals of Butadiene. Note that the ninth class can be 
coupled in 2 ways and thus gives rise to 2 configurations 

Serial 
No 

---~-~-·--~~ 

1 

2 

--·~-

3 
--x --

-x---x-
4 

-x-x---

5 
-x---x-

--X --
6 

--x---x--

--x-x-
7 

·--x --

8 

--x--
9 --x--

-x-x-
10 

11 
---X--

x---x 

----x--·-

--x -~~ -~x -- -~~---

--x-x~ ·-x-x- --x ----

---~.-- -x--x--

--~--· ·-~·---· -x~ 

-x-x- ·-x--x- ----=-----
--~-- --~--- -X-X-

---X --- --X -- --X --

------- ------ -X-X-

--~~~--- --x-x-

--x -- --·x -~-~ --x ·--

--x·--

--x--

----x--
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